skip to main content


Search for: All records

Creators/Authors contains: "Reed, Catherine L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We explored neural processing differences associated with aging across four cognitive functions. In addition to ERP analysis, we included task-related microstate analyses, which identified stable states of neural activity across the scalp over time, to explore whole-head neural activation differences. Younger and older adults (YA, OA) completed face perception (N170), word-pair judgment (N400), visual oddball (P3), and flanker (ERN) tasks. Age-related effects differed across tasks. Despite age-related delayed latencies, N170 ERP and microstate analyses indicated no age-related differences in amplitudes or microstates. However, age-related condition differences were found for P3 and N00 amplitudes and scalp topographies: smaller condition differences were found for in OAs as well as broader centroparietal scalp distributions. Age group comparisons for the ERN revealed similar focal frontocentral activation loci, but differential activation patterns. Our findings of differential age effects across tasks are most consistent with the STAC-r framework which proposes that age-related effects differ depending on the resources available and the kinds of processing and cognitive load required of various tasks. 
    more » « less
    Free, publicly-accessible full text available April 1, 2025
  2. Abstract

    Pupillary synchrony or contagion is the automatic unconscious mimicry of pupil dilation in dyadic interactions. This experiment explored electrophysiological event‐related potential (ERP) concomitants of pupillary synchrony. Artificial pupils (black dots) were superimposed on either partial faces (eyes, nose, brow) or random textures. Observers were asked to judge dot size (large, medium, or small). There was clear evidence of pupillary synchrony with observer pupil dilation greater to large dots than to small or medium dots. The pupillary synchrony increased in magnitude throughout the trial and was found both with faces and with textures. When the stimuli were partial faces with artificial pupils (dots), there was ERP activity related to target dot size in the period at P250 and P3. A face specific N170 was also found. When the stimuli were random textures with dots, there was ERP activity at P1 and in the interval from 140 to 200 ms post‐stimulus onset. The use of ERP with pupillometry revealed results for faces that were consistent with a social explanation of pupillary synchrony whereas results for textures were consistent with a local luminance explanation.

     
    more » « less
  3. Autism spectrum disorder (ASD) is a neurodevelopmental syndrome characterized by impairments in social perception and communication. Growing evidence suggests that the relationship between deficits in social perception and ASD may extend into the neurotypical population. In electroencephalography (EEG), high autism-spectrum traits in both ASD and neurotypical samples are associated with changes to the mu rhythm, an alpha-band (8–12 Hz) oscillation measured over sensorimotor cortex which typically shows reductions in spectral power during both one’s own movements and observation of others’ actions. This mu suppression is thought to reflect integration of perceptual and motor representations for understanding of others’ mental states, which may be disrupted in individuals with autism-spectrum traits. However, because spectral power is usually quantified at the group level, it has limited usefulness for characterizing individual variation in the mu rhythm, particularly with respect to autism-spectrum traits. Instead, individual peak frequency may provide a better measure of mu rhythm variability across participants. Previous developmental studies have linked ASD to slowing of individual peak frequency in the alpha band, or peak alpha frequency (PAF), predominantly associated with selective attention. Yet individual variability in the peak mu frequency (PMF) remains largely unexplored, particularly with respect to autism-spectrum traits. Here we quantified peak frequency of occipitoparietal alpha and sensorimotor mu rhythms across neurotypical individuals as a function of autism-spectrum traits. High-density 128-channel EEG data were collected from 60 participants while they completed two tasks previously reported to reliably index the sensorimotor mu rhythm: motor execution (bimanual finger tapping) and action observation (viewing of whole-body human movements). We found that individual measurement in the peak oscillatory frequency of the mu rhythm was highly reliable within participants, was not driven by resting vs. task states, and showed good correlation across action execution and observation tasks. Within our neurotypical sample, higher autism-spectrum traits were associated with slowing of the PMF, as predicted. This effect was not likely explained by volume conduction of the occipitoparietal PAF associated with attention. Together, these data support individual peak oscillatory alpha-band frequency as a correlate of autism-spectrum traits, warranting further research with larger samples and clinical populations. 
    more » « less
  4. Background: Animations of scientific concepts may improve comprehension by explaining and visualizing the steps of complex processes, but unless they engage student interest in meaningful ways, their effectiveness as teaching tools is limited. We achieve this through a novel approach to animation design that includes the target audience (undergraduates) so that the resultant animations align with their learner characteristics. Objective: This case study investigated whether undergraduate-generated animations were more effective educational tools than informationally equivalent text-and-illustration presentations and whether learners’ background influenced the relative benefits of animations. Method: Incorporating feedback from faculty and undergraduates, we created animations and text-plus-illustration content to explain how neural signals are generated and measured by scalp electrodes. Neuroscience majors and non-majors were presented with either animations or static presentations followed by comprehension and engagement assessments. Results: Both groups showed comprehension and engagement benefits for animations. Although majors showed better overall comprehension, animations improved comprehension for non-majors over static presentations. Conclusion: When educational content is directed for a target audience, animations can be more effective teaching tools for a broader student audience. Teaching Implications: The relevance of online tools for remote instruction makes animations, developed for and by undergraduates, important tools for effectively introducing difficult content. 
    more » « less
  5. The lateralized ERP N2pc component has been shown to be an effective marker of attentional object selection when elicited in a visual search task, specifically reflecting the selection of a target item among distractors. Moreover, when targets are known in advance, the visual search process is guided by representations of target features held in working memory at the time of search, thus guiding attention to objects with target-matching features. Previous studies have shown that manipulating working memory availability via concurrent tasks or within task manipulations influences visual search performance and the N2pc. Other studies have indicated that visual (non-spatial) vs. spatial working memory manipulations have differential contributions to visual search. To investigate this the current study assesses participants' visual and spatial working memory ability independent of the visual search task to determine whether such individual differences in working memory affect task performance and the N2pc. Participants ( n = 205) completed a visual search task to elicit the N2pc and separate visual working memory (VWM) and spatial working memory (SPWM) assessments. Greater SPWM, but not VWM, ability is correlated with and predicts higher visual search accuracy and greater N2pc amplitudes. Neither VWM nor SPWM was related to N2pc latency. These results provide additional support to prior behavioral and neural visual search findings that spatial WM availability, whether as an ability of the participant's processing system or based on task demands, plays an important role in efficient visual search. 
    more » « less